

The Deep Space Network as a Science Instrument
Suzanne R. Dodd

Deep Space Network

Science done with the DSN:

Radio Science

Planetary Radar

Radio Astronomy

Radio Science History

Apparent even with early missions that occultations by planetary atmospheres would affect radio communications

- Tragedy!
- Or one person's annoyance is another's data --- Study atmospheric properties!

"Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere" (Kliore et al. 1965, Science)

- Can also study planetary interior!
- Turn the DSN+spacecraft into one giant science instrument

Radio Science – How it works

Radio Science in the Solar System Today

Radio Science in the Future

Launching in early 2020s

Probing the structure of

Ice Giant Mission Concept

Radar with the DSN

DSN Radar Accomplishments

- First indications of Venus retrograde rotation (1962)
- Probing the surfaces of asteroids (1976)
- First radar returns from Titan (1989-1993), suggestive of icy surface but with potential liquids
- Anomalous reflections from Mercury (1991), indicative of polar ice

Magellan radar image of Venus (NASA/Caltech/JPL)

Cassini radar image of Titan (NASA/JPL/USGS)

MESSENGER+radar image of Mercury (NASA/HU APL/CIW/NAIC)

Radar Observations of Asteroids

Radar delivers size, rotation, shape, density, surface features, precise orbit, nongravitational forces, presence of satellites, mass, ...

- Science: Decipher the record in primitive bodies of epochs and processes not obtainable elsewhere
- Robotic or crewed missions: Navigation, orbit planning, and observations
- Planetary defense: Orbit determination for hazard assessment

About 15% of near-Earth asteroids are binaries

Almost all identified from radar

Radar Imaging Example

Toutatis

DSN's DSS-14

- 3.75 m resolution, 7 million km away
- ~65 hr of radar observations (13 hr with 3.75 m resolution)

surface boulder

Chang'e 2 spacecraft

- 8 m resolution, closest image at 18.3 km away (2 m resolution)
- 15 seconds of highresolution data

Radio Astronomy - Exploring Stars

Orion Nebula

MDSCC Host Country project

Rizzo et al., "The line emission of Orion-KL between 41 and 50 GHz" (in preparation)

Most sensitive and widest spectrum of Orion KL between 6 and 7 mm. Obtained with Q-band receiver and wideband backend attached at DSS-54.

Interstellar Chemistry

First Detection of ³He⁺ in the Planetary Nebula IC 418

Stars like the Sun should produce lots of ³He

Less ³He detected than expected

- Planetary Nebulae offer chance to check how much ³He made by low-mass stars
- Only 3rd detection of ³He⁺ in planetary nebulae

Guzman-Ramirez et al.

Hunting for Supermassive Black Holes

DSS-63 Survey

Kondratko, et al. "Discovery of Water Maser Emission in Eight AGNs with 70 m Antennas of NASA's Deep Space Network," ApJ, 638

http://eyes.nasa.gov/dsn/dsn.html

Deep Space Network

A Science Instrument in its Own Right!

